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The remarkable transport properties of graphene follow not only from the Dirac-type energy dispersion, but
also from the chiral nature of its excitations, which makes unclear the limits of applicability of the standard
semiclassical Boltzmann approach. In this paper we provide a quantum derivation of the transport scattering
time in graphene in the case of electron-phonon interaction. By using the Kubo formalism, we compute
explicitly the vertex corrections to the dc conductivity by retaining the full chiral matrix structure of graphene.
We show that at least in the regime of large chemical potential the Boltzmann picture is justified. This result is
also robust against a small sublattice inequivalence, which partly spoils the role of chirality and leads to a
doping dependence of the resistivity that can be relevant to recent transport experiments in doped graphene
samples.
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I. INTRODUCTION

The physical properties of doped and undoped graphene
are the subject of an intense investigation in the view of
possible applications of these materials in electronic and op-
tical devices. A precise characterization of its transport and
optical properties is thus a compelling issue. In addition to its
relevance for technological applications, graphene poses sev-
eral unusual and interesting theoretical problems. The low-
energy properties are dominated by the Dirac-type excita-
tions at the so-called K and K� points of the Brillouin zone,
where the tight-binding electronic dispersion of the graphene
honeycomb lattice can be approximated as �k= ��vF�k�.
Here k is the relative momentum with respect to the K �K��
point.1 An additional ingredient is also the chiral character of
the bands, which gives rise to the well-known absence of
backward scattering in transport.2 Note that, although obvi-
ously related in graphene, these two issues are formally dis-
tinct and are associated with different phenomenologies. A
Dirac-type behavior can be induced, for instance, in nodal
d-wave superconductors, as cuprates, without any relation to
chirality.3–5 On the other hand a chiral structure is still
present even in bilayer graphene, where the low-energy
bands acquire a parabolic character.6

Transport properties represent a particular delicate issue
in graphene. As in any other system, also for graphene the
full quantum treatment of transport processes would require
the explicit evaluation of the current vertex corrections for
the conductivity.7,8 Indeed, only by going beyond the so-
called bare-bubble approximation, one can recover the dis-
tinction between the transport relaxation time �tr and the
“quasiparticle” one �qp �relevant, for instance, for photoemis-
sion measurements�. However, the chiral nature of excita-
tions in graphene increases considerably the complexity of
this approach. For this reason, transport properties are often
discussed in doped graphene �i.e., when the chemical poten-
tial is far from the Dirac point� within the framework of the
semiclassical Boltzmann theory.9–17 In this context, �tr differs
from �qp for a weighted average of the scattering probability

with the angular factor �1−cos �� �where � is the angle be-
tween incoming and outgoing scattering electrons�. As usual,
this leads to the suppression of forward-scattering
processes.18,19

Even though a general expectation holds that the Boltz-
mann theory should be valid for doped graphene, the appli-
cation of this approach to a chiral system such as graphene is
far from being trivial. Indeed, due to the multiband chiral

structure, the velocity operator v̂k=�−1dĤk /dk in graphene

does not commute with the Hamiltonian Ĥk=�vFk ·� itself,
where k= �kx ,ky� and �= ��̂x , �̂y� is the vector of the Pauli
matrices. As it has been observed by many authors,20–22 this
fact poses several doubts on the applicability of conventional
Boltzmann theory. In the Boltzmann theory indeed one as-
sumes that the equilibrium distribution function f��k� in the
presence of the external electric field E can be described in
terms of the one in the absence of external fields as fE�k�
� f0��k−e�trvk ·E�, where vk=�−1d�k /dk and e is the elec-
tron charge.23 An important underlying assumption here is
that the energy eigenvalue �k is a good quantum number as
well as the shifted quantity �k−e�trvk ·E. This would imply

that the energy Hamiltonian operator Ĥk and the velocity
operator v̂k commute so that they can be diagonalized simul-
taneously. As discussed above, however, this condition is not
fulfilled in chiral graphene. To overcome this problem alter-
native approaches based on quantum and/or quasiclassical
kinetic equations have been employed, where distribution
functions and the corresponding density operators are de-
fined in a chiral matrix space.20,22

A second potential limit in the applicability of the Boltz-
mann theory concerns the origin of the angular factor �1
−cos �� in the expression of the transport scattering time.
Indeed, in conventional systems it originates from the mo-
mentum dependence of the current operator ĵ�k�
= �e /��dĤk /dk, which points along the k direction in the
isotropic case, ĵ�k��k / �k�. It is precisely such directional
dependence which gives rise to the angular factor 1
−vk ·vk� / �vk

2��1−k ·k� / �k2�=1−cos � in the transport
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properties.7,8 Things are drastically different in the case of
graphene, where we have

ĵ�k� =
e

�

dĤk

dk
= evF� .

The important feature to be stressed is that the bare vertex
current operator is here k independent; i.e., it does not de-
pend on the direction of the momentum k= �kx ,ky�. Thus the
possible relevance of the angular factor �1−cos �� suppress-
ing forward scattering in the transport properties should be
better assessed. This is particularly important when the scat-
tering processes involve a momentum dependence more
complex that the short-range impurity scattering discussed in
Refs. 24–26. A typical example is provided by the scattering
of electrons by acoustic phonons, which plays a major role in
controlling the temperature dependence of the dc
conductivity.27,28

In order to assess these open issues, we provide in this
paper an explicit derivation of the dc conductivity in doped
graphene using a fully quantum approach for the electron-
phonon �el-ph� scattering based on the Kubo formula. In-
deed, in nonchiral systems this procedure is known to give a
quantum derivation of the Boltzmann theory.7,8 In the case of
graphene this program can be fulfilled only by retaining the
full chiral structure in the explicit calculation of the current
vertex corrections. In the limit where the chemical potential
is larger than the quasiparticle scattering time, an analytical
solution can be derived. We show that, in spite of the above
argumentations, at least in this regime the results of the Bolt-
zmann theory are still valid, in the sense that the forward-
scattering suppression in the transport relaxation rate is still
operative, as resulting from the additional angular factor �1
−cos �� in �tr. This result follows from the fact that the de-
pendence on the momentum angle of the vertex function is
strictly replaced by a corresponding angular dependence in
the pseudospin space, encoded in the Pauli matrix structure.
We investigate the applicability of the Boltzmann results also
in the presence of a weak inequivalence between the two
carbon sublattices, which, close to the Dirac point, leads to a
mixing of the chiral eigenstates.29,30 We show that even in
this case the Boltzmann results are recovered. The present
quantum approach provides in addition a basis for the future
calculation of the quantum vertex corrections at finite fre-
quency and in the Dirac limit, which can be both relevant for
a direct comparison with existing experimental data.27,28,31

The structure of the paper is the following. In Sec. II we
introduce the Hilbert space we are working with and the
basic formalism for the electron-phonon interaction, while in
Sec. III we evaluate the self-energy due to the electron-
phonon interaction in graphene. In Sec. IV we implement the
calculation of the vertex corrections for the dc conductivity,
and we derive the explicit expression for the transport scat-
tering rate. In Sec. V we report the results in the presence of
an additional weak inequivalence between the two sublat-
tices, which breaks the chirality preserving the Boltzmann
approach. In Sec. VI we discuss some possible observable
effects of our analysis in relation to the doping dependence
of the high-temperature linear slope of the resistivity, and in

Sec. VII we summarize our conclusions. In Appendixes A
and B we include some details on the calculation of the
Eliashberg functions and on the gapped case, respectively.

II. MODEL

In order to point out the relevance of the angular transport
factor �1−cos �� in chiral doped graphene, we consider in
this paper the effects of electron scattering with acoustic
phonons. Let us start by introducing the general electron-
phonon Hamiltonian in terms of the usual orbital spinor �k

†

= �ck,A
† ,ck,B

† �, where ck,A
† and ck,B

† represent the creation op-
erators of one electron with momentum k on sublattices A
and B, respectively. In this basis we can write

Ĥ = Ns�
k

�k
†Ĥk

0�k + �
q,	


q,	aq,	
† aq,	

+ Ns �
k,q,	

�k+q
† ĝk,k+q,	�k�aq,	 + a−q,	

† � .

Here Ĥk
0 is the noninteracting tight-binding electron Hamil-

tonian,

Ĥk
0 = � 0 f��k�

f�k� 0
� , �1�

where f��k� is the Fourier transform of the tight-binding
model on the honeycomb lattice, aq,	

† is the creation operator
of one phonon with momentum q in the 	 branch, 
q,	 is the
corresponding frequency, and ĝk,k+q,	 is the electron-phonon
matrix element which presents in general a nontrivial matrix
structure. Ns=2 takes into account here the spin degeneracy
which will play no role in the following.

In this paper we shall work in the original basis of elec-
tron operators for the A and B sublattices, as described in Eq.
�1�. This choice results to be more convenient in the evalu-
ation of the transport properties from a linear-response
theory based on the Kubo formula. As an alternative ap-
proach the eigenvector basis, in which Hamiltonian �1� is
diagonal, was employed in Refs. 20–22 since it makes easier
the implementation of a quantum or quasiclassical extension
of the kinetic equations.

A compelling treatment of the electron-phonon interaction
including the full phonon spectrum for all q’s is a formidable
task due to the complex matrix structure of the elements
ĝk,k+q,	. Fortunately, since in weakly doped graphene the
electron momenta are close to the Dirac point, the relevant
exchanged phonons are mainly located either close to the
K ,K� edge zone or at the � �q=0� point. Detailed analysis of
the electron-phonon effects for general acoustic and optical
modes can be found in Refs. 32–39. We concentrate here on
the electron-phonon scattering with the acoustic modes with
q�0, which are dominant in the dc transport properties at
low temperatures. Several simplifications can be employed
in this case. First of all, the phonon dispersion can be simply
linearized, 
q,	��vs�q�. In addition for q→0 the charge
modulation wavelength �=1 / �q� is much larger than the in-
teratomic distance a. In this regime the two carbon atoms of
the unitary cell are essentially indistinguishable so that the
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electron-phonon matrix element behaves as ĝk,k+q�gk,k+qÎ
in the chiral space. Within the same assumption, we can also
neglect intervalley scattering and discuss interactions within
a single Dirac cone.24 Finally, for small doping, we can lin-

earize the electron dispersion close to the Dirac points, Ĥk
0

=�vFk ·�. We can write thus our effective Hamiltonian as

Ĥ = NsNk�
k

�k
†�vFk · ��k + �

q
�vs�q�aq

†aq

+ NsNK�
k,q

gq�k+q
† Î�k�aq + a−q

† � , �2�

where we made use of the relation gk,k+q�gq for q→0.
The resulting electron-phonon coupling is usually ex-

pressed in terms of the kernel Wk−k��
−
��, which is dia-
grammatically depicted in Fig. 1 and which represents the
effective retarded interaction between two electrons with
momenta k and k� and energies 
 and 
�, which exchange
momentum k−k� and energy 
−
�. From Eq. �2� we have

Wk−k��
 − 
�� = �gk−k�
2 �Dk−k��
 − 
�� , �3�

where Dq�
�=2
q / 	
q
2 −
2
 is the phonon propagator. Note

that, since ĝq� Î in the limit q→0, Eq. �3� does not present a
matrix structure, simplifying notably the calculations. It is
also convenient to express the effective retarded interaction
in terms of the Eliashberg function �2F�q ,
�:

Wk−k��
 − 
�� =� d

2
�2F�k − k�,
�


2 − �
 − 
��2 , �4�

where �2F�k−k� ,
�= �gk−k��
2��
−
k−k��.

In this paper we shall focus on the case of intrinsically
doped graphene, where the chemical potential ��� is much
larger than both the allowed exchanged phonon energies

max and the quasiparticle scattering rate �qp. Note that in the
case of acoustic phonons, the highest exchanged phonon en-
ergy 
max is given by the Bloch-Grüneisen energy scale

max=2�vskF, so that the constraint ����
max implies vF
�vs, which is always fulfilled in graphene. The condition
�qp� ���, on the other hand, is doping dependent and it is
usually fulfilled in doped graphene. In this situation, since
electrons are scattered only within a narrow energy window
�
max around the Fermi level, we can put the electron mo-
menta appearing in the Eliashberg function on the Fermi sur-
face, so that it depends only on the relative angle. Writing
k=k�cos � , sin �� �see Fig. 2�, we have thus k�k��kF, and
we can write �q�=2kF sin	��−��� /2
 and �2F�k−k� ,
�
=�2F��−�� ,
�. Moreover, the condition ����
max,�qp al-
lows us also to restrict ourselves to a single electron �hole�

cone for ��0 ���0�, with a significant simplification of
the calculations 	see Eq. �18� below
.

Before discussing the one-particle self-energy, let us
briefly summarize the properties of the noninteracting system
whose Green’s function per spin and valley, in the Matsubara
space, reads

Ĝ0�k,i
n� =
1

�i�
n + ��Î − �vFk · �

=
�i�
n + ��Î + �vFk · �

	�i�
n + ��
2 − ��vFk�2 . �5�

We can expand the Green’s function in the Pauli matrix ba-
sis,

Ĝ0�k,i
n� = �
i=I,x,y

Gi
0�k,i
n��̂i. �6�

It is easy to see, from Eqs. �5� and �6�, that the diagonal part
GI

0�k , i
n� depends only on the �=�vFk �k= �k��, while the
off-diagonal components depend also on the angle �. In par-
ticular, we can write explicitly

GI
0�k,i
n� = G+

0��,i
n� ,

Gx
0�k,i
n� = G−

0��,i
n�cos � ,

Gy
0�k,i
n� = G−

0��,i
n�sin � ,

where

G�
0 ��,i
n� =

1

2
� 1

i�
n + � − �
�

1

i�
n + � + �

 .

III. ONE-PARTICLE SELF-ENERGY

Let us now consider the one-particle self-energy for the
electron-phonon interaction. As mentioned, we are interested
here in the limit ����
max. In this regime the theorem of
Migdal40 assures the validity of the standard mean-field-like
theory of Eliashberg.41 The corresponding self-energy is thus
diagrammatically depicted in Fig. 3, and it can be written in
Matsubara space as

FIG. 1. Diagrammatic representation of the electron-phonon in-
teraction. Straight lines represent incoming and outgoing electrons,
the wavy line is the phonon propagator, and the filled circles are the
el-ph matrix elements.

x

y

φ
k

FIG. 2. Sketch of the cylindrical coordinates used in the paper.
In this coordinate basis we can write k=k�cos � , sin ��.
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�̂�k,n� = T �
k�,m

Wk−k��n − m�Ĝ�k�,m� , �7�

where Ĝ�k ,n�= Ĝ�k , i
n�, �̂�k ,n�= �̂�k , i
n�, and Wk−k��n
−m�=Wk−k��i
n− i
m�.

From the Dyson equation we can write

Ĝ�k,n� =
1

�i�
n + ��Î − �vFk · � − �̂�k,n�
.

Since Eq. �7� is a convolution both in momentum and
frequency space, it is easy to show that the matrix self-
energy admits the analogous decomposition �6� of Green’s
function �6�, namely,

�̂�k,n� = �
i=I,x,y

�i�k,n��̂i,

where �I�k ,n�=�I�� ,n�, �x�k ,n�=�x�� ,� ,n�
=�off�� ,n�cos �, and �y�k ,n�=�y�� ,� ,n�=�off�� ,n�sin �,
where the label “off’ characterizes the off-diagonal elements
of the self-energy.

Using the Dyson equation, we can write once more
GI�k ,n�=G+�k ,n�, Gx�k ,n�=G−�� ,n�cos �, and Gy�k ,n�
=G−�� ,n�sin �, with

G���,n� =
1

2
� 1

i�
n + � − � − �I��,n� − �off��,n�

�
1

i�
n + � + � − �I��,n� + �off��,n�
 . �8�

The calculation of Eq. �7� is straightforward in the case of
intrinsically doped graphene. As discussed above, the rel-
evant electron momenta are here restricted on the Fermi sur-
face, k�kF ��=��, so that self-energy �7� depends only on
the angular part of the k vector, �i�� ,� ,n���i�� ,n�. We
can also split the sum over k� in Eq. �7� in its energy and
angular degrees of freedom, �k→�−�

� d� /2��0
Wd�N���,

where W is the electron bandwidth, and N���=�V /2��2vF
2 is

the density of states per spin and per valley, and V is the
unit-cell volume. Thus we have

�i��,n� = T�
m
� d��

2�
W�−���n − m��i����Gi,loc�m� , �9�

where �I=1, �x���=cos �, �y���=sin �, and Gi,loc�m�
is the local �k-averaged� Green’s function: GI,loc�m�
=G+,loc�m�=�N���d�G+�� ,m� and Gx,y,loc�m�=G−,loc�m�
=�N���d�G−�� ,m�.

It is useful at this stage to introduce the basis of the two-
dimensional spherical harmonics

����� = ei��, � = 0, � 1, � 2, . . . ,

so that we can decompose any generic angle-dependent func-
tion S��� on this basis,

S��� = �
�

S������ , �10�

where

S� =� d�

2�
S�����

���� . �11�

Using definition �4� of the electron-phonon kernel, we can
write the diagonal and off-diagonal components of the self-
energy in Eq. �9� as

�I�n� = T�
m
� d


2
�2F0�
�

2 + �
n − 
m�2G+,loc�m� , �12�

�off�n� = T�
m
� d


2
�2F1�
�

2 + �
n − 
m�2G−,loc�m� , �13�

where �2F� are the projections of the Eliashberg function
�2F��� on the spherical harmonics �����, according to de-
composition �10� above.

Equations �12� and �13� can be easily analytically contin-
ued on the real-frequency axis using standard techniques.
Through the imaginary part of the self-energy, we can thus
define a diagonal and an off-diagonal scattering rate, �I�off�
=−lim
→0 Im �I�off��
+ i0+�, where

�I = − 2�N���� d
�2F0�
�	n��
� + f��
�


�Im	G+,loc�
 + i0+�
 , �14�

and where

�off = − 2�N���� d
�2F1�
�	n��
� + f��
�


�Im	G−,loc�
 + i0+�
 , �15�

and where n�x�=1 / 	ex−1
 and f�x�=1 / 	ex+1
 are the Bose
and Fermi factors, respectively.

For a practical evaluation of the self-energy terms, we can
make use once more of the fact that, due to the low-energy
phonon-mediated scattering, the relevant electron energies
are restricted to the Fermi level. In this case we can write
�0

Wd�N����N����0
Wd� and, assuming ��0, it is easy to see

that only the upper Dirac cone 	first term in Eq. �8�
 is rel-
evant. We have in particular G+,loc�
+ i0+��G−,loc�
+ i0+�
=−i�N��� /2, so that, just as in common metals, the real part
of the self-energy vanishes, and we have �I=2K0 and �off
=2K1, where

K� =
�N���

2
� d
�2F��
�	n��
� + f��
�
 . �16�

For the states at the Fermi energy, which involve only the
upper band ���0�, we can define thus a total quasiparticle
scattering rate as

Σ =
FIG. 3. Diagrammatic representation of the electron-phonon

self-energy. Graphical elements as in Fig. 1.
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�qp = �I + �off = 2K0 + 2K1, �17�

which, using Eq. �8�, gives the dressed Green’s functions:

G+��,
� � G−��,
� �
1

2

1

�
 + � − � + i�qp
. �18�

From Eqs. �14�–�17� we obtain finally

�qp = �N��� �
i=0,1

� d
�2Fi�
�	n��
� + f��
�


=�N���� d�

2�
g�

2�1 + cos ��	n��
�� + f��
��
 ,

�19�

where g�
2= I�q�= I2kF sin�� /2� and 
�=�vs�q�

=2�vskF sin�� /2�. Using the explicit expression for the K�

coefficients �see Appendix A�, we obtain standard results
with a �qp= 	�2N���I /�
maxvs
T2 in the Bloch-Grüneisen
regime �T�
max� and �qp= 	�N���I /�vs
T in the high-
temperature T�
max regime.

It is important to note that the total quasiparticle scatter-
ing rate arises from both the diagonal and off-diagonal con-
tributions of the self-energy. Indeed, the explicit angular de-
pendence shown in the second line of Eq. �19� points out that
the off-diagonal terms, giving rise to the cos �, are funda-
mental in order to recover the usual �1+cos �� factor, which
accounts for the well-known absence of backscattering in
graphene due to chirality.14,18,19

IV. DC CONDUCTIVITY

We implement now a full quantum treatment to evaluate
the dc conductivity � in the presence of vertex current renor-
malization. We consider thus the current-current response
function7,8

��m� =
NsNK

V
T�

k,n
Tr	 ĵ�k�Ĝ�k,n�

�Ĵ�k;n,n + m�Ĝ�k,n + m�
 , �20�

where Ns ,NK=2 are the spin and valley degeneracies, re-
spectively, j�k�=evF�̂x is the bare current operator along the

x axis, and Ĵ�k ;n ,n+m� is the fully renormalized vertex cur-
rent. The diagrammatic representation of the current-current
response function is shown in Fig. 4. The dc conductivity
will be obtained as the limit �=−lim
→0 Im ��
+ i0+� /

after the analytical continuation of the current-current re-
sponse function � on the real-frequency axis.

It is useful to remark here the importance in transport
properties of the current-renormalization processes which ac-
count for the backflow cloud associated to the current of the
quasiparticles. As discussed in Sec. I, one of the main effects
of such current renormalization in normal metals is to give
rise to the angular factor �1−cos �� which differentiates the
transport scattering rate �tr from the quasiparticle one �qp.
We can understand this result by noting that in normal �iso-
tropic� metals, the bare and the renormalized currents j and

J, respectively, are both proportional to the velocity; i.e.,
they point in the direction of the momentum k. Thus, one can
write J=�k, where the vertex function � can be computed,
for instance, in the ladder approximation. The self-consistent
solution gives thus8

��tr�� ���qp�1 −
k · k�

k2 ��
�

, �21�

where k ,k� are the momenta of the scattered electrons, with
modulus equal to kF but different directions, and �¯�� indi-
cates the angular integration. This leads to the usual addi-
tional factor �1−k ·k� /k2�= �1−cos �� in the angular average
of the transport scattering time, which reproduces by means
of a full quantum treatment the well-known semiclassical
Boltzmann result.

While deriving result �21�, a crucial ingredient is the pro-
portionality between J and the momentum k. In graphene,
where the energy-momentum dispersion is linear, such a re-
lation clearly does not hold. However, as it is evident already
at the level of the bare current ĵ, the matrix structure plays
the analogous role of the momentum dependence in ordinary
metals, so that ĵx, for example, is a matrix proportional to �̂x.
As far as the renormalized current is concerned, the analog
of the momentum dependence in the ordinary metals be-

comes now a decomposition of Ĵ in the Pauli matrices’ com-

ponents, by means of dimensionless function �̂ defined by

the relation Ĵ�k ;n ,n+m�=evF�̂�k ;n ,n+m�. As we shall see
in what follows, in graphene such a matrix structure
compensates—in a nontrivial way—for the lack of momen-
tum dependence of the Fermi velocity, and leads once more
to the Boltzmann result.

Aiming on focusing on the matricial structure of the cur-
rent function, in the following we shall make use for the
quantity of the same approximations employed for the self-
energy. In particular, taking into account that the electron-
phonon interaction gives rise only to low-energy scattering,
we can approximate k�kF in the vertex function and retain
only the angular dependence. In addition, one can decom-
pose the vertex function in the basis of the Pauli matrices,

�̂��;n,n + m� = �
i

�i��;n,n + m��̂i, �22�

and we can expand the �i��� functions in terms of the
spherical harmonics components as in Eq. �10�: �i�� ;n ,

Jj

FIG. 4. Diagrammatic representation of the current-current re-
sponse function �. The small empty triangle on the left represents
the bare current vertex ĵ�k�, while the big triangle on the right is the

renormalized current vertex function Ĵ�k ;n ,n+m�.
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n+m�=���i
��n ,n+m������. Inserting Eq. �22� into Eq. �20�

and assuming, once more, for doped graphene that G+�G−
�neglect of interband scattering�, we obtain thus the general
structure

��m� =
2e2vF

2NKNS

V
T�

n

�tot�n,n + m�b�n,n + m� , �23�

where b�n ,n+m�=N����d�G�� ,n�G�� ,n+m� �since G+
=G− we have further dropped the index “�”� and where
�tot�n ,n+m�=�i,�ci

��i
��n ,n+m�. The ci

� are numerical coef-
ficients which arise from the angular average over �. Since
in bubble �20� one has the product of two Green’s functions,
it is easy to realize that the angular average will involve at
most harmonics up to the second order. Indeed, an explicit
calculation shows that the only nonvanishing terms are

cx
0 = cI

1 = cI
−1 = 1, �24�

cx
2 = cx

−2 = − icy
2 = icy

−2 =
1

2
. �25�

Once the analytical continuation i
m→
+ i0+ of bubble
�23� is performed and the limit 
→0 is evaluated to com-
pute the dc conductivity, one can see8 that only the
advanced-retarded parts of the vertex function and of the b
function contribute, so that

� �
NKNs�e2vF

2

�V
bRA�0��RA

tot �0� , �26�

where bRA���=lim
→0 b�
+ i0+,
− i0+�, and �RA
tot �0�

=lim
→0 �tot�
+ i0+,
− i0+�. From Eq. �18� one easily finds

bRA�0� =
N����
4�qp

,

which gives the general expression for the dc conductivity in
the presence of vertex corrections:

� =
NKNs�e2vF

2N���
4V�tr

, �27�

where we define the transport scattering rate

�tr =
�qp

�RA
tot �0�

. �28�

In the absence of vertex corrections 	�RA
tot �0�=1
 one rec-

ognizes in Eq. �27�, as mentioned above in the case of ordi-
nary metals, the standard result of the conductivity in the
bare-bubble approximation,24,42 where the scattering time for
transport coincides with the quasiparticle scattering time �
=e2� / �2���qp�.

To compute Eq. �26� we need then to calculate the vertex
corrections. In the doped-graphene regime we are interested
in, this aim is made easy once more by the Migdal theorem
which enforces the validity of the mean-field theory. The

corresponding vertex function �̂�k ;n ,n+m� can be evalu-
ated thus within the self-consistent ladder approximation �see
Fig. 5�, namely,8

�̂�k;n,n + m� = �̂x + T�
k�,l

Wk−k��n − l�Ĝ�k�,l�

��̂�k�;l,l + m�Ĝ�k�,l + m� . �29�

In the same limit ����
max, we can also employ the ap-
proximations implemented for the self-energy, namely, �k�
��k���kF and �k�→N����−�

� d�� /2��−�
� d��, and we can

also set �̂�kF� ; l , l+m�= �̂��� ; l , l+m� on the right-hand side

of Eq. �29�. Expanding again the �̂��� ; l , l+m� in terms of
the Pauli basis and of the spherical harmonics, we end up
with the following set of equations:

�x
��n,n + m� = ��,0 + T�

l,j,�
cj

�W��n − l�

�b�l,l + m�� j
�+��l,l + m� , �30�

�I
��n,n + m� = T�

l,j,�
dj

�W��n − l�b�l,l + m�� j
�+��l,l + m� ,

�31�

�y
��n,n + m� = T�

l,j,�
f j

�W��n − l�b�l,l + m�� j
�+��l,l + m� ,

�32�

where the coefficients ci
� are defined in Eqs. �24� and �25�,

and the only nonzero terms of the coefficients di
� and f i

� are

dI
0 = 2,

dx
1 = dx

−1 = − idy
1 = idy

−1 = 1,

fy
0 = − if I

1 = if I
−1 = 1,

− ifx
2 = ifx

−2 = − fy
2 = − fy

−2 =
1

2
.

We consider now the analytical continuation of Eqs.
�30�–�32� on the real axis. We are interested in the quantities
�i,RA

� �0�. We can apply the usual standard procedures for the
analytical continuation8 to each element on the right side of
Eqs. �30�–�32�, and we get, for instance,

�x,RA
� �0� = ��,0 +

�N���
2

� d
�2F��
�	n��
� + f��
�


���
j,�

cj
�� j,RA

�+� �
�
�qp�
� 
 . �33�

Similar expressions hold true for �I,RA
� �0� and �y,RA

� �0�.
The quantities � j,RA

� �
� and �qp�
� on the right side of
Eq. �33� have a significant 
 variation over an electronic

Λ = + Λ

FIG. 5. Diagrammatic representation of the current vertex func-
tion. Graphical elements as in Fig. 1. The ladder approximation is
enforced by the Migdal theorem valid for ����
max.
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range of energies, whereas the Eliashberg function �2F��
�
limits the energy integration up to the phonon scale 
max. In
this energy range we can then approximate in the integral of
Eq. �33�, � j,RA

� �
��� j,RA
� �0�, and �qp�
���qp�0�=�qp, and

we obtain a simple set of algebraic relations for the vertex
function at zero frequency,

�x,RA
� �0� = ��,0 +

K�

�qp
�
j,�

cj
�� j,RA

�+� �0� ,

�I,RA
� �0� =

K�

�qp
�
j,�

dj
�� j,RA

�+� �0� ,

�y,RA
� �0� =

K�

�qp
�
j,�

f j
�� j,RA

�+� �0� .

Despite its apparent complexity, such a system of equa-
tions admits a simple solution. In particular, by exploiting the
symmetric/antisymmetric properties for �→−� of the x, I,
and y components, respectively, one can see that only three
independent components are not zero, i.e., �x,RA

0 , �x,RA
2 , and

�I,RA
1 , with the relations, �x,RA

2 =�x,RA
−2 = i�y,RA

2 =−i�y,RA
−2 and

�I,RA
1 =�I,RA

−1 . The system can be further simplified by noting
that it can be rewritten in terms of a single self-consistent
equation for �RA

tot :

�RA
tot = 1 +

K0 + 2K1 + K2

�qp
�RA

tot ,

whose solution gives

�RA
tot �0� =

�qp

�qp − K0 − 2K1 − K2
. �34�

Finally, by expressing the quasiparticle scattering rate �qp as
a function of the K� terms as in Eq. �17� we obtain

�tr = K0 − K2. �35�

Equations �34� and �35� are the main results of the present
paper. Their physical insight appears clearly if we express
the transport scattering rate in terms of the microscopic
electron-phonon interaction, in analogy with result �19� for
the quasiparticle scattering rate:

�tr = K0 − K2 = �N���� d�

2�
g�

21 − cos 2�

2
	n��
�� + f��
��


= �N���� d�

2�
g�

2�1 − cos ���1 + cos ��

�	n��
�� + f��
��
 . �36�

Taking into account the expression of the quasiparticle scat-
tering rate �qp in Eq. �19�, we can write Eq. �36� as

��tr�� = ��qp�1 − cos ����. �37�

This analysis shows thus that a fully quantum derivation
of the dc conductivity yields in doped graphene the same
result than the standard Boltzmann theory. In particular we
can see that, although the vertex function is k independent in

graphene, the effect of current vertex corrections is to add,
just as in common systems, the additional angular factor 1
−cos � in the phase space probed by the electron-phonon
interaction, giving rise to a suppression of the forward scat-
tering. The effects of such angular factor can be remarkably
traced in the temperature dependence of the transport scat-
tering rate �tr=K0−K2 �and hence of the resistivity  =1 /��
compared with the quasiparticle one �qp=2�K0+K1�. An ana-
lytical derivation of the K� coefficients is reported in Appen-
dix A and the corresponding temperature dependence of �tr
and �qp is shown in Fig. 6. These results are pretty well
consistent with the standard Boltzmann theory.18,19 In the
high-temperature limit T�
max only the K0 component sur-
vives, with K0=�N���IT /2�vs �see Appendix A�, so that
�tr ,�qp�T. On the other hand in the Bloch-Grüneisen re-
gime, just as in common metals, we recover the usual �tr
�T4, while �qp�T2. This different dependence can be un-
derstood by noting that the low-temperature behavior of �qp
in Eq. �17� is dominated by the leading order �T2 of K0 and
K1, whereas the leading orders K0 and K2 in Eq. �35� cancel
out so that the temperature behavior of �tr in this regime
stems from the higher-order �T4 contributions.

V. BREAKING THE CHIRALITY

In Sec. IV we have evaluated the dc conductivity in chiral
doped graphene by using a quantum approach based on the
Kubo formula. We have shown that, although the vertex
function is momentum independent, the Boltzmann results
are fully reproduced, even for what concerns the presence of
the so-called angular transport factor 1−cos � which sup-
presses forward scattering. We would like to stress however
that the resulting validity of the Boltzmann theory is by no
means trivial. Indeed, as we have shown, the robustness of
the Boltzmann results is due to the chiral structure itself of

graphene, Ĥk=�vFk ·�, which translates in the direction of
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FIG. 6. �Color online� Temperature behavior of the quasiparticle
scattering rate �qp and of the transport scattering rate �tr for �
=0.1 eV, corresponding to 
max�4 meV. The transport scattering
rate �tr can be also expressed as a function of resistivity,  
=4V�tr /NKNs�e2vF

2N���, as plotted on the right-side scale.
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the Pauli matrix pseudospin � the role which in common
metals is played by the momentum k direction.

Such observation raises the question about the validity of
the Boltzmann result when the chiral structure of graphene is
affected by external fields. This happens, for instance, in the
presence of a weak sublattice inequivalence, where an en-
ergy potential difference between the two sublattices, besides
opening a gap at the Dirac point,34,43 gives rise also to a
mixing of the chiral eigenstates and to a loss of chirality
close to the Dirac point. Such reduced role of the chirality
close to the Dirac point has been traced, for instance, in Refs.
29 and 30 in the intensity profile along the constant-energy
contours probed by angle-resolved photoemission.29,30 The
validity of the Boltzmann results even in this context needs
thus to be revised.

To this aim in this section we consider doped graphene in
the presence of a weak inequivalence between the two car-
bon sublattices, parametrized in terms of a different sublat-
tice potential !:

Ĥk = �vFk · � + !�̂z. �38�

The energy spectrum is easily obtained from Eq. �38�, Ek

=���vFk�2+!2, showing the opening of a gap at the Dirac
point.

Let us consider for the moment the case of a noninteract-
ing system. The presence of ! induces an explicit ��̂z com-
ponent in both the Green’s function and self-energy. Equa-

tion �6� is thus generalized as Ĝ�k ,n�=�i=I,x,y,zGi�k ,n��̂i,
where GI�k ,n�=G+�E ,n�, Gx�k ,n�="off�E�G−�E ,n�cos �,
Gy�k ,n�="off�E�G−�E ,n�sin �, and Gz�k ,n�="z�E�G−�E ,n�,
with

G��E,n� =
1

2
� 1

i�
n + � − E
�

1

i�
n + � + E

 ,

"off�E�=� /E, and "z�E�=! /E. Here we denote �=�vFk and
E=��2+!2.

Since we are interested in the doped graphene, where
����
max, and we assume ��0, we can as usual consider
only the upper band, and we can restrict the electronic states
on the Fermi surface, for which E�� and ���1−!2 /�2,
and we have

Gi�E,n� =
"i

2
g�E,n� , �39�

where "I=1, "x="y ="off=�1−!2 /�2, and "z=! /� and
where g�E ,n�=1 / �i�
n+�−E�.

Plugging Eq. �39� into Eq. �7�, we can write

�I�n� =
T

2 �
m

W�n − m�gloc�m� ,

�off�n� =
"offT

2 �
m

W1�n − m�gloc�m� ,

�z�n� =
"zT

2 �
m

W�n − m�gloc�m� ,

where gloc�m�=N����dEg�E ,m�. After the standard analyti-
cal continuation on the real axis, we can see as usual that the
real part of self-energy vanishes and the imaginary parts of
the different components give rise to the corresponding scat-
tering rates

�I = 2K0, �40�

�off = "off2K1, �41�

�z = "z2K0. �42�

Inserting these relations in the matrix expression for the
Green’s function, after some careful derivation described in
Appendix B, we can write a Green’s function in the presence
of interaction in the form of Eq. �18�, with

�qp = �I + "off�off + "z�z = �1 + "z
2�2K0 + "off

2 2K1

= �1 +
!2

�2�2K0 + �1 −
!2

�2�2K1.

We can write thus

�qp = �N���� d�

2�
g�

2	n��
�� + f��
��


���1 +
!2

�2� + �1 −
!2

�2�cos �
 . �43�

Equation �43� shows in a direct way the reduced effect of the
chirality on the quasiparticle scattering rate in the presence
of a sublattice inequivalence. For instance, we can see that
the backscattering �=� is now not completely suppressed
but it is reduced by a factor of !2 /�2 with respect to the
forward scattering �=0. For ���=!, when the chemical po-
tential is on the edge of the gap,29 the K1 angular dependence
disappears completely and the quasiparticle scattering is
completely isotropic with no effect of chirality.

Let us consider now the dc conductivity. Using the same
derivation as in Sec. IV, we can still write a set of equations
as Eqs. �30�–�32� with the same ci

�, di
�, and f i

� and rescaled

quantities K0→"off
2 K0, K1→ �1+"z

2�K1, and K2→"off
2 K2. The

presence of ��̂z terms in the Green’s function gives rise in
addition to a finite z component �z

�. After lengthy but
straightforward calculations we can still write the same self-
consistent equation for the total vertex function as before,
with the rescaling of the K� coefficients discussed above.
The final result is

�RA
tot �0� =

"off
2 �qp

�qp − "off
2 K0 − 2�1 + "z

2�K1 − "off
2 K2

,

so that
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�tr =
�qp − "off

2 K0 − 2�1 + "z
2�K1 − "off

2 K2

"off
2

=
�2 + 3!2

�2 − !2 K0 −
4!2

�2 − !2K1 − K2. �44�

Equation �44� looks at first sight quite dim. However, taking
into account the explicit angular dependence of the Eliash-
berg functions �2F� and of the coefficients K�, we can rear-
range Eq. �44� in the form

��tr�� = �1 −
!2

�2�−1

��qp�1 − cos ����, �45�

where the presence of the angular term �1−cos �� suggests
again the validity of the Boltzmann result even in this case
where the chirality of graphene close to the Dirac point is
affected by the sublattice inequivalence. As far as the pref-
actor is concerned, one could in principle justify this as well
within the Boltzmann framework by taking into account that
the opening of the gap affects also the Fermi velocity of the
eigenstates of Hamiltonian �38�. Thus, following the Boltz-
mann prescription, the velocity in the basis of the eigenstates

is vk=�−1d���vFk�2+!2 /dk=vF�k /��k
2+!2�vF

�1−!2 /�2,
where �k=�vFk and ��k

2+!2�� at the Fermi level. Thus,
the additional �1−!2 /�2� factor, which we obtained in Eq.
�45� associated with vertex corrections, will appear in the
Boltzmann expression for the conductivity �B
=e2N���v2 /2��B� associated to the v2 term instead of the
scattering rate, which is simply ��B��= ��qp�1−cos ����.

VI. DISCUSSION

In Secs. IV and V we have shown that, in the limit where
the chemical potential is the largest energy scale of the sys-
tem, the Boltzmann theory is still valid for graphene even in
the presence of a weak sublattice inequivalence which gives
rise to a gap !. A possible outcome of the extension of these
calculations beyond this “Boltzmann regime” is suggested by
the observation of the �weak� doping dependence of the re-
sistivity  that follows from Eq. �45�. As shown in Fig. 7�a�,
both the low-temperature �T�
max� and the high-
temperature �T�
max� regimes acquire a doping depen-
dence, here parametrized in terms of the ratio r= �! /��2.
Particularly interesting appears the high-temperature regime
where, using Eqs. �44� and �A4�, one finds

 =
�2 + 3!2

�2 − !2

�D2

4�e2vF
2vs

2 m

T , �46�

which implies a significant increase in the linear slope as one
approaches the Dirac point �→!, as shown in Fig. 7�b�.
Observe that if one would use instead the single-bubble re-
sult for the dc conductivity, the resistivity would be propor-
tional to the quasiparticle scattering rate �qp, so that accord-
ing to Eq. �43� one would obtain

 bare = �1 +
!2

�2� �D2

4�e2vF
2vs

2 m

T , �47�

which has a much weaker doping dependence, as shown in
Fig. 7�b�. Remarkably, an increase in the linear slope as �
decreases has been observed in recent measurements of re-
sistivity in doped graphene samples.27,28 Indeed, while the
measured crossover from a power-law behavior to a linear-T
behavior points toward the electron-phonon scattering as the
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FIG. 7. �Color online� �a� Temperature dependence of the resistivity for different dopings in the presence of a weak sublattice inequiva-
lence, giving rise to the gap !. Here r=!2 /�2. Resistivity has been computed using the transport scattering time in Eq. �44�. Inset: same
quantities on a log-log scale. �b� Doping dependence of the high-temperature slope of the resistivity in graphene in the presence of a gap
�!=5 meV�. The dashed �red� line is result �47� obtained with the bare bubble, while the solid �black� line represents resistivity �46�
computed with full inclusion of vertex corrections. The shaded area at ��30 meV represents the range of dopings investigated in Ref. 28,
while in the gray area around 5 meV the validity of Eq. �46� fails because ���−!#�qp ��qp=1.4 meV has been computed here for T
=300 K�.
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source of the temperature dependence, the fact that the slope
of the linear term decreases as doping increases, and eventu-
ally saturates at enough large doping, is unexplained within
existing theories. Equation �46� could suggest a possible
mechanism for this doping dependence, even though in the
regime of validity of this equation the quantitative variations
in the slope are expected to be much smaller than what were
experimentally measured. Indeed, recent tunneling experi-
ments performed in a similar suspended graphene sample
have found a gap at the Dirac point !�5 meV.44 This small
value of the gap, compared to the relevant values �
�30–70 meV of the chemical potential in the samples in-
vestigated in Ref. 28, would lead, in Eq. �46�, to a variation
in the slope of only few percent, as shown in Fig. 7�b�.
However, one should keep in mind that Eq. �46� has been
derived in the limit �qp��. Thus, only the full solution in
the crossover region where the Dirac point is approached can
discriminate if the doping dependence reported in Refs. 27
and 28 is an effect of a small gap opening which goes be-
yond the Boltzmann approach. Analogously, it can be worthy
also to investigate alternative scenarios45 for the gap opening
that have been suggested by photoemission results in epitax-
ial graphene,46,47 where the gap !�100 meV is comparable
to the chemical potential in the interesting doping regime.

VII. CONCLUSIONS

In summary, in this paper we outlined the issue of the
calculation of the current vertex corrections for electron-
phonon scattering in graphene within the Kubo formalism.
While previous works investigated the role of vertex correc-
tions in the presence of impurity scattering,24,26 here we ad-
dress the issue of vertex corrections in graphene when the
scattering mechanism arises from electron-phonon interac-
tions, which have a nontrivial momentum dependence. We
analyzed in particular the case of doped graphene, when � is
the largest energy scale of the system �i.e., ����
max,�qp�.
In this regime the calculations can be performed explicitly,
leading to an analytical derivation of the transport scattering
rate which appears in the dc conductivity. Remarkably, we
found that despite the lack of direction dependence of the
quasiparticle velocity in graphene, the matrix structure asso-
ciated to the current vertex plays a similar role as the mo-
mentum dependence of the renormalized vertex in ordinary
metals, leading to a confirmation of the Boltzmann approach.
Such a result is confirmed also in the presence of a sublattice
inequivalence, which leads to a gapped Dirac spectrum and
introduces a doping dependence of the resistivity that can be
a promising candidate to explain existing experimental data
in doped graphene samples. With respect to the formalism
based on the quantum kinetic equations,20,22 which is also
aimed at investigating the applicability of the Boltzmann re-
sult, the present approach based on the calculation of vertex
corrections for the conductivity bubble has the main advan-
tage of being suitable of a direct extension at finite fre-
quency. Such an extension will lead to a full quantum treat-
ment of the conductivity in graphene, and will be the subject
of a future work.
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APPENDIX A: HARMONIC COMPONENTS OF THE
ELIASHBERG FUNCTIONS AND K� COEFFICIENTS

In this appendix we provide an explicit expression for the
harmonic components of Eliashberg functions �2F��
�, and
we calculate the temperature dependence of the correspond-
ing functions K��T�. We recall the definition of the
momentum-dependent Eliashberg function,

�2F�k − k�,
� = �gk−k��
2��
 − 
k−k�� ,

where 
q��vs�q�. Following Ref. 19, we notice that �gq�2
� �q�, so that we can write �gq�2= I�q�, where I
=�D2 /2V mvs, D is the deformation potential, V is the vol-
ume of the two-dimensional unit cell, and  m is the graphene
mass density. Typical values are D�19 eV,  m=7.6
�10−8 g /cm2, vs=2�106 cm /s, and vF=106 m /s. Re-
stricting the electron momenta on the Fermi surface, �k�
��k���kF, we can write �q�=2kF sin	��−��� /2
, and the
Eliashberg function will result to depend only on the ex-
changed angle �=�−��:

�2F��,
� = 2IkF sin��/2��	
 − 
max sin��/2�
 , �A1�

where we recall that 
max=2�vskF.
The angular components �2F� will be evaluated simply

projecting Eliashberg function �A1� on the spherical harmon-
ics �����=ei��. We have thus

�2F��
� = 2IkF�
0

2� d�

2�
sin��/2�ei���	
 − 
max sin��/2�


= 2IkF�
0

� d�

�
sin �ei2���	
 − 
max sin �
 .

The � function has two solutions for �� 	0:�
, one for �
=y
 and one for �=�−y
, where y
=arcsin�
 /
max�. We
can write thus

�2F��
� = 2IkF�
0

� d�

�
sin �ei2�� 1

�
max cos����

�	��� − y
� + ��� − � + y
�


=
4IkF

�
max
2


��
max − 
�
�1 − �
/
max�2

1

2
	ei2�y
 + ei2���−y
�


=
2I

��vs


 cos�2�y
���
max − 
�
�
max

2 − 
2
, �A2�

where we made use of sin�y
�=sin��−y
�=
 /
max and

�cos�y
��= �cos��−y
��=�1− �
 /
max�2.
Inserting Eq. �A2� into Eq. �16� which defines the K�

function, we can obtain their temperature dependence. By
rescaling the integration variable to y=�
, we have
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K� =
N���I

�vs

T2


max
�

0

�
max

dy
y

�1 − �y/�
max�2

�cos�2� arcsin
y

�
max
�	n�y� + f�y�
 . �A3�

In the low-temperature limit T�
max we can retain the lead-
ing terms in powers of y /�
max in the integrand and send the
upper limit of integration to infinity, �
max→�. We obtain
thus

K� =
N���I

�vs

T2


max
�a1 + a3

1 − 4�2

2

T2


max
2 
 ,

where an=�0
�dyyn	n�y�+ f�y�
, and in particular, a1=�2 /4

and a3=�4 /8. In the opposite high-temperature limit T
�
max, we can instead compute the integrand function in
Eq. �A3� as y→0. In this case, due to the rapid oscillations
of the cosine term, all the harmonics vanish except the �
=0 one, which displays a linear-T dependence:

K0�T� =
�N���I

2�vs
T . �A4�

APPENDIX B: TOTAL QUASIPARTICLE SCATTERING
RATE IN THE PRESENCE OF SUBLATTICE

INEQUIVALENCE

In this appendix we derive the effective total quasiparticle
scattering rate in graphene in the presence of sublattice in-
equivalence. Let us start from the scattering rates in Eqs.
�40�–�42�, which we can write in the matricial form:

�̂ = �IÎ + �off	cos ��̂x + sin ��̂y
 + �z�̂z. �B1�

Considering the Hamiltonian in Eq. �38�, we have then

Ĝ−1��,
� = ��
 + i�I�Î + �! − i�z��̂z

− �� − i�off�	cos ��̂x + sin ��̂y
 .

The spectral function, whose width determines the total ef-

fective quasiparticle scattering rate, is associated with the GI
term, which results to

GI��,
� =
�
 + � + i�I

��
 + � + i�I�2 − �� − i�off�2 − �! − i�z�2 .

�B2�

In order to identify the total effective quasiparticle scattering
rate, we expand now the denominator and write, in particu-
lar,

�� − i�off�2 + �! − i�z�2

= �2 + !2 − �off
2 − �z

2 − 2i���off + !�z� .

Since �2+!2�� and �off ,�z� ���, we can neglect �off
2 −�z

2

with respect to E2=�2+!2 and, at the same order, we can
write

E2 − 2i���off + !�z� � �E − i� �

E
�off +

!

E
�z�
2

� �E − i��1 −
!2

�2�off +
!

�
�z�
2

.

Plugging this result into Eq. �B2�, we can now split the re-
sulting Green’s function into the usual two contributions
from the upper and lower bands,

GI�E,
� =
1

2 �
s=�

1

�
 + � + i�I $ E � i��

,

with

�� = �I � ��1 −
!2

�2�off +
!

�
�z� ,

so that at the Fermi level in the upper band we obtain

�qp = �I +�1 −
!2

�2�off +
!

�
�z.
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